
Copyright (c) 1998 C. J. Date page 1.#

WHAT A DATABASE REALLY IS:
PREDICATES AND PROPOSITIONS

An open letter to Open University database students

Hugh Darwen

ABSTRACT
Despite the name, a database is best thought of as a repository not just for data, but rather
for facts—that is, for true propositions. The article that follows explains this remark in lay
terms and begins to explore some of its many implications.

PREFACE
This article is an essay by Hugh Darwen, addressed to the students he tutors on a database
course offered by the Open University in the UK. When he showed it to me for review, I was
very pleased, for I had long felt such an article was sorely needed; indeed, I had thought of
trying to write one myself. Hugh's explanation for writing it intrigued me:

"Almost every year, about halfway through the course, some student or other
asks, in a manner that suggests the question has been burning: What's a
predicate? I'm always so pleased that anybody has even realised this might
be an important question that I take pains over my careful but ad hoc answer.
And then I think: Why didn't we get this out of the way right at the very
beginning? This year, I'm giving it a try."

Well, I hope it works for Hugh's students, for I sincerely believe that if only more people—
especially DBMS implementers—thought this way about databases, then we might stand a
chance of seeing the emergence of respectable database systems that people could enjoy
and not have to fight with.

—Chris Date

AUTHOR'S NOTE
The essay was originally written in 1997 in connection with the Open University's course
M357, Data Models and Databases, that was M358's predecessor. This 2005 version is
identical to the original apart from some obvious minor revisions to bring it up to date (such
as in the first paragraph of the following introduction).

INTRODUCTION
Hello. Let me introduce myself. My name is Hugh Darwen, and I am the tutor (staff
number 44525) in region 4 for certain students on course M358, which is entitled Relational
Databases.

The foregoing paragraph contains three sentences, and those sentences are different in kind
as well as in content:

• The first, "Hello," is a mere signal, establishing contact.

Copyright (c) 1998 C. J. Date page 1.#

• The second is in the form of an imperative, demanding something of you, the reader
(though of course we all know that it's really just a common courtesy in this particular
instance).

• The third is a plain statement of fact.

Each of these three kinds of sentence has an analogue in communications between people
and computers. We often have to do something special to establish contact with a
computer; we often use the imperative style to give commands to the computer; and
sometimes such a command includes a statement of fact that we want the computer to
remember (because that fact is both true and relevant), or forget (because it is now either
false or irrelevant). I focus for the rest of this article on this "statement of fact" kind of
sentence.

STATEMENTS OF FACT
How do we distinguish statements of fact from other kinds of sentences, such as greetings,
imperatives, and questions? Well, here's another example that might help:

I am writing this article in my study at home in Warwickshire on February 9th,
1997.

Now, you cannot tell whether what I've just told you is a true statement of fact or a false
one, but you do know, from its very form, that it is either true or false. By contrast, we
cannot say of utterances such as "Hello," "Let me introduce myself," or "What's the time?"
that they must be either true or false.

By the way, you will observe that I do entertain the notion that a "statement of fact" might
be false. If you think that the very term statement of fact connotes undeniable truth, please
don't worry too much—I could have chosen an alternative term, such as assertion or
declaration. As always, the concept is more important than the terminology, and sometimes
it's difficult to choose the most appropriate term in everyday speech to match a concept one
is trying to communicate, especially when that concept is a very precise one. I'll continue to
use statement of fact in this article, but I'm about to introduce an alternative term also, one
that is conventionally used to mean precisely the concept I'm trying to convey. That term is
proposition.

PROPOSITIONS
The term proposition is the one logicians use for the "statement of fact" concept. Aristotle
(384-322 BC) understood the importance of propositions, and he worked out a formal
system of reasoning whereby, from an assumption of the truth of certain given propositions,
the truth of certain other derived propositions can be concluded. The given propositions are
called axioms and the method of reasoning is called logic. The axioms and the derived
propositions concluded from those axioms are collectively called theorems. For example,
given certain propositions already discussed in this article, you could use logic to obtain the
following logical consequence (i.e., derived proposition):

The home of the Open University tutor identified by staff number 44525 is in
Warwickshire.

Further, if the given propositions are in fact true, then you can be sure the logical
consequence (the conclusion) is true, too.
Note: Why might you bother to obtain a derived proposition (or logical consequence) such as the one just shown?
I suggest that you would be very unlikely to do so unless somebody asked you a question to which that derived
proposition would be an appropriate answer.

Copyright (c) 1998 C. J. Date page 1.#

A DATABASE IS A SET OF TRUE PROPOSITIONS
It's useful to view a database as representing a set of propositions (assumed to be true
ones) concerning some enterprise of which the database is supposed to provide some kind
of record (I'm using the term record here in its generic sense, not the special sense in which
it's often used in computer contexts—in database contexts in particular). If we do take that
view, there are some important questions that immediately arise:

• How do we choose which propositions should be stated to form the record of our
enterprise?

• In what form should those propositions be stated?

• How can we instruct the computer to remember or forget a given proposition or set of
propositions?

• Can we get the computer to prevent us from stating propositions that are ridiculous or
contradictory? A ridiculous proposition might be one that states that a certain person is
200 years old; contradictory ones might state that a person is both male and female, or
that a tutor in region 4 is—contrary to Open University rules—tutoring a student in
region 5.

• In what form can we present a question (or "query") to the computer, the response to
which would be a proposition or a set of propositions derived by logic from a given
database? And in what form should we expect to find that response?

Course M358 answers these questions. Indeed, there's little in that course that's not related
to at least one of them, though you might note that I didn't bother to mention certain
subsidiary matters, such as who's allowed to access a database, how the computer checks
authorizations, how databases might be protected from accidental loss or damage, and so
on.

PREDICATES
There's a word in my title that I haven't used yet, and I come to it now: predicate. The
concept of predicates is very important, for an understanding of them could underpin
everything you will be asked to learn on course M358.

Consider two things:

���� First, logicians from Aristotle onwards found that reasoning based just on the notion of
propositions had certain severe limitations, which they eventually overcame by studying
certain generalized forms of such propositions. They found that, when several
propositions are of the same generalized form, various impressive shortcuts could be
taken by reasoning in terms of those general forms instead of in terms of individual
propositions per se.

���� Second, commercial databases can contain billions of propositions; if propositions of the
same general form cannot somehow be lumped together, such databases will surely be
unmanageable and unusable.

Logicians use the term predicate for the "general form" in question. (Some authorities use
the alternative term propositional function, which does have a certain attraction to it for
reasons too deep for the present article.) It's predicates that have made databases,
database management, and database queries tractable to computerization. Consider once
again the proposition from my opening paragraph, which I'll now restate in a very slightly
different way:

Hugh Darwen is the name of a tutor (staff number 44525) in region 4 for
certain students on course M358, which is entitled Relational Databases.

Copyright (c) 1998 C. J. Date page 1.#

It's easy to see that this statement has a certain form that could be common to a whole set
of propositions one might wish to state in some record of the enterprise called the Open
University. For example, we could replace the course number M358 by M355, thereby
obtaining a proposition which makes the same kind of sense as the original one, and might
even be true. (In fact it's not true, for two reasons: First, I'm not a tutor for any students
on course M355; second, course M355 is not entitled Relational Databases.)

Here's what is probably the most general form of the original proposition that we might all
agree on:

... is the name of a tutor (staff number ...) in region ... for certain students
on course ... , which is entitled

And that's a predicate!
Note: In the database literature you'll sometimes find the term predicate used in some more restrictive sense;
you might even find it used in some subtly different sense. For example, quite often it's used where the term
condition would be appropriate. I prefer to keep predicate for the sense agreed by logicians.

Here then are some important points to note and questions to be asked:

1. The predicate as shown can be broken down in various ways into smaller pieces, each of
which is a predicate in turn. For example, "... is the name of a tutor" is a predicate, and
so are "... is the name of a tutor (staff number ...)" and "course ... is entitled ..." (and so
on).

2. It might be useful to give the predicate a name, such as TUTOR_INFO. Such names are
used a great deal in database designs, as you will discover in course M358. Indeed,
many of the names used in databases are really predicate names, even if they aren't
often referred to as such.

3. The holes marked by "..." are known as placeholders. It might be useful to give them
names, too. In fact, predicates are often written using such names. For example:

TUTOR is the name of a tutor (staff number STAFF#) in region REGION# for
certain students on course COURSE#, which is entitled TITLE.

4. Notice that the placeholder names are often accompanied by text indicating the kind of
thing they stand for: "TUTOR is the name," "staff number STAFF#," "region REGION#,"
and so on. Staff number and name here are both common nouns, standing for
anything or everything of the kind indicated. Region is perhaps a little sloppy,
considering that what follows is really a region number, not a region per se, but "the
region identified by region number REGION#" seemed just a little heavy-handed for my
present purpose.

Now, if those "indicators of kind" are common nouns, then the accompanying
placeholders themselves can be thought of as pronouns. For example, consider the
statement "He is her father." This statement contains two pronouns, he and her; he
stands for some unspecified person who is the father of some other unspecified person,
her. Now, in normal discourse the context would provide referents for these pronouns,
and we would know precisely who is being asserted to be whose father. Because there
are no referents here, we can't tell which people they actually stand for. However,
imagine a context in which the referents are Tom and Jane, respectively. Then we will
understand that we need to substitute Tom and Jane for the pronouns to obtain "Tom is
Jane's father." In a like manner, when we substitute an appropriate name or proper noun
for each placeholder in a predicate, we obtain a proposition. For example, if we
substitute Hugh Darwen for TUTOR and 44525 for STAFF# (and so on) in the
TUTOR_INFO predicate, we obtain once again the proposition:

Hugh Darwen is the name of a tutor (staff number 44525) in region 4 for
certain students on course M358, which is entitled Relational Databases.

Copyright (c) 1998 C. J. Date page 1.#

In general, if there are n placeholders and we substitute a proper noun for one of them,
we obtain a predicate with n-1 placeholders (and so on). When there are no placeholders
left at all, the predicate degenerates to a pure proposition—it is now true or false,
unequivocally.

5. The presence of at least one placeholder in a predicate means it cannot be the kind of
statement of which we can say categorically that "it is true" or "it is false." Although we
can make propositions out of predicates, a predicate is not, in general, a proposition (the
exception is the degenerate case of a predicate with no placeholders at all).

6. It's important to agree on what proper nouns, in general, are appropriate for each
placeholder. For example, we might not wish to form propositions such as:

3.14159 is the name of a tutor (staff number Camembert) in region CV35 7AN
for certain students on course Aintree, which is entitled Jurassic Park.

Note: I hope you'll bear with my suggestion to treat, e.g., 3.14159 and CV35 7AN as proper nouns—logically,
they are.

Indeed, the proper nouns agreed upon will almost certainly bear a close relationship to
the kind of thing the placeholder represents, often indicated by the presence of a
common noun in the predicate (as discussed in point 4).

7. The connectives and and or can be used with predicates, to make longer predicates, just
as they can be used with propositions to make longer propositions. Not can be used, too.

8. Would it actually be a good idea to use the suggested form, TUTOR_INFO, to hold
information about tutors in the Open University database? Can you think of any
problems that might arise if we did?

9. The form of some predicate might also be used to formulate a question ("query") to be
presented to the computer. The answer to that question would be the set of all
propositions that (a) can be formed by substitution of proper nouns for placeholders in
the form and (b) can be shown to be true. Of course, if the database itself uses the form
of that same predicate to hold the original given statements of fact, then "showing to be
true" will be, for the computer, a trivial task of mere regurgitation.

QUANTIFICATION
In point 4 in the previous section I showed how to make a proposition out of a predicate by
substitution of a proper noun for each placeholder. However, there's another way of
disposing of a placeholder; it goes by the name of quantification, meaning "saying how
many." Consider for example the simple predicate:

ARTIST painted a portrait of PERSON.

Instead of just substituting appropriate names for both ARTIST and PERSON (as in, e.g.,
"Holbein painted a portrait of Henry VIII"), I can obtain propositions by saying how many
artists painted a portrait of a certain person, or how many people had their portraits painted
by a certain artist.

Now, there's one particular form of quantification that is both fundamental and very
common: It's called existential quantification, and it involves replacing the placeholder
in question by a phrase involving something like "at least one" or "some" or "there exists."
For example, the following are all propositions that can be obtained from the predicate
"ARTIST painted a portrait of PERSON":

Holbein painted a portrait of some person.

Some artist painted a portrait of Henry VIII.

Some artist painted a portrait of some person.

Aristotle studied propositions of a certain form that includes quantifiers. He realized that if
propositions of the form "a is x" and "a is not x" are interesting, then we might also want to

Copyright (c) 1998 C. J. Date page 1.#

consider the truth of "Some a is x," "Every a is x," and "No a is x." "Some" (as we have
seen) is the existential quantifier. "Every" is what we now call the universal quantifier.
"No" is a negated form of the existential quantifier, for "No a is x" clearly means the same
as "It is not the case that some a is x." However, while these observations might justify a
claim that Aristotle started the study of predicates, that study did not come to fruition until
the late 19th century, with the contributions of Frege, Boole, Peirce, and others.

CONCLUDING REMARKS
The M358 course material does use the term predicate a little, but not a lot, for there are
other ways of saying what's going on in databases—ways that are often more appealing, in
their own special contexts, than always talking in terms of predicates. However, if you have
difficulty understanding those other ways, try referring them back to the predicates and
simple logic that really underpin the whole subject.

To end, here are three observations to give you a feel for that universal underpinning:

���� In Blocks I and IV of the course we study a method of analysis known as "Entity-
Relationship modelling", this activity being a common preliminary step in database
design. Deciding what entity types to describe and what types of relationship might exist
among instances of those entity types is really just deciding what kinds of statements of
fact one would like to use to make a formal record of the enterprise being modelled.
Kinds of statements of fact, as we have seen, are otherwise known as predicates. The
concept known as attribute in this modelling method is just placeholder by another
name.

���� In Block II we study a theory called "The Relational Model of Data" and a simple
computer language called RAS based on that theory. We will discover how the ideas of
predicate names and placeholder names are used in the formulation of such languages,
and we will discover how queries can be presented to the computer by constructing
predicates from predicates, using substitution, quantification, and the "connectives" and,
or, and not. Incidentally, in this theory we will discover that the mathematical term
relation is used to refer collectively both to the general form of a predicate and to the set
of true propositions that can be formed from it.

���� RAS is not a commercially used language — it has been designed especially for the Open
University for tutorial purposes. In Block III we will study the industry's most widely
accepted attempt to implement the theory we learned in Block II, a database language
called SQL. SQL has become so prevalent since its first commercial appearance in 1979
as to have been characterized by one rather flamboyant authority as "intergalactic
dataspeak." Alas, the industry's most widely accepted attempt is not a very good one, as
we shall see, but a good understanding of predicates will help us to use SQL wisely in
spite of its traps and shortcomings.

Copyright (c) 1998 C. J. Date page 1.#

ACKNOWLEDGMENTS
Thanks to Adrian Larner, who first taught me to think this way, and for the observation that
a database is not really a model of an enterprise, but a record or account of it; thanks also
to Mike Newton of the Open University, Chris Date, and Adrian Larner again, for reviews of
early drafts of this article and valuable suggestions. Further thanks to Chris Date for the
preface, which he wrote for the essay's appearance in the book mentioned below.

(Originally published in Database Programming & Design 11, No. 7, July 1998. Also appears
in Relational Database Writings 1994-1997 by C.J. Date, as Part II, Chapter 1. Addison-
Wesley Longman Limited 1998. ISBN: 0-201-39814-1.)

